Estimación de la respuesta probabilística de edificios de acero utilizando redes neuronales artificiales

Juan Bojórquez Mora, Alfredo Reyes Salazar, Francisco López Almansa

Resumen


Resumen

Se presenta un enfoque para obtener con una precisión aceptable factores de transformación probabilísticos mediante el entrenamiento de un modelo de red neuronal artificial (RNA). Los factores de transformación probabilísticos se definen como la relación entre la respuesta sísmica de estructuras de múltiples grados de libertad (SMGL) y sus sistemas equivalentes de un grado de libertad (S1GL), asociadas a una tasa de excedencia anual prescrita. El enfoque se utiliza para predecir la respuesta sísmica de edificios de acero. Se proponen ecuaciones útiles para obtener factores de transformación probabilísticos en términos de la ductilidad y la distorsión máxima de entrepiso, se establecen como función de la tasa media anual de excedencia y del período fundamental de vibración. Se muestra que las redes neuronales artificiales son una herramienta útil para los procedimientos de diseño sísmico basados en la confiabilidad estructural y para mejorar la próxima generación de metodologías de diseño sísmico.

Abstract

An approach to obtain with acceptable accuracy probabilistic response transformation factors by training an artificial neural network (ANN) model is presented. The transformation factors are defined as the ratio of the seismic response of multi-degree-of-freedom structures and their equivalent single-degree-of-freedom systems, associated with a given annual exceedance rate. The approach is used for predicting the seismic response of steel framed buildings. Closed-form expressions to obtain probabilistic response transformation factors for maximum ductility and inter-story drift, as functions of their mean annual rate of exceedance, and of the fundamental vibration period of the structure, are proposed. It is shown that artificial neural networks are a useful tool for reliability-based seismic design procedures of framed buildings and for the improvement toward the next generation of earthquake design methodologies based on structural reliability.


Referencias


Fragiadakis M., Vamvatsikos D., Karlaftis M.G., Lagaros N.D., Papadrakakis M. Seismic assessment of structures and lifelines. Journal of Sound and Vibrations, Vol. 334, 2015, p. 29-56.

Chojaczyk AA., Teixeira AP., Neves L.C., Cardoso J.B., Guedes-Soares C. Review and application of Artificial Neural Networks models in reliability analysis of steel structures. Structural Safety, Vol. 52, 2015, p. 78-89.

Bojórquez E., Ruiz SE., Terán-Gilmore A. Reliability-based evaluation of steel structures using energy concepts. Engineering Structures, Vol. 30, Issue 6, 2008, p. 745-1759.

Papadrakakis M., Papadopoulos V., Lagaros D.L. Structural reliability analysis of elastic-plastic structures using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering, Vol. 136, 1996, p. 145-163.

Papadrakakis M., Lagaros D.L. Reliability-based structural optimization using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering, Vol. 191, 2002, p. 3451-3507.

Hurtado JE., Alvarez DA. Neural network-based reliability analysis: a comparative study. Computer Methods in Applied Mechanics and Engineering, Vol. 191, 2002, p. 113-132.

Cardoso J.B., Almeida J.R., Dias J.M., Coelho P.G. Structural reliability analysis using Monte Carlo simulation and neural networks. Advances in Engineering Software, Vol. 39, Issue, 6, 2007, p. 505-513.

Möller O., Foschi R.O., Quiroz L.M., Rubinstein M. Structural optimization for performance-based design in earthquake engineering: applications of neural networks. Structural Safety, Vol. 31, Issue 6, 2009, p. 490-499.

Lautour O.R., Omenzetter P. Prediction of seismic-induced structural damage using artificial neural networks. Engineering Structures, Vol. 31, Issue 2, 2009, p. 600-606.

Serkan E., Onur O., Fuad O. Estimation of ultimate torque capacity of the SFRC beams using ANN. Structural Engineering and Mechanics, Vol. 53, Issue 5, 2015, p. 939-956.

Chin-Sheng K., I-Cheng Y. Optimal design of plane frame structures using artificial neural networks and ratio variables. Structural Engineering and Mechanics, Vol. 52, Issue 4, 2014, p.739-753.

Haykin S. Neural Networks: A Comprehensive Foundation, Prentice-Hall, Englewood Cliffs, 1999.

Martín del Brio M., Molina SM. Redes Neuronales y Sistemas Difusos. Alfaomega, Madrid, Spain, 2002.

Shepherd G. M. The synaptic organization of the brain. 4a edición, 1997, Oxford University Press.

Rumelhart DE., Hinton GE., Williams RJ. Learning internal representation by error backpropagation. Parallel distributed processing: explorations microstructure of cognition 1, MIT Press Cambridge, MA, 1986, pp. 318–362.

Cornell CA. Engineering seismic risk analysis. Bulletin of the Seismological Society of America, Vol. 58, Issue 5, 1968, p. 1583-1606.

Inoue T., Cornell CA. Seismic hazard analysis of multi-degree-of-freedom structures. Reliability of marine structures RMS-8 Technical Report, Stanford, California, 1990.

Esteva L., Ruiz S.E., Rivera J. Reliability and performance-based seismic design of structures with energy-dissipating devices. 9th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, 2005, Kobe, Japón.

Bojórquez E., Ruiz S.E., Esteva L. Funciones de transformación de respuestas máximas entre marcos estructurales y sus correspondientes S1GL con probabilidades de falla similares. XV Congreso Nacional de Ingeniería Sísmica, 2005, Ciudad de México.

Carr A. RUAUMOKO, inelastic dynamic analysis software. University of Cantenbury, 2000, Department of Civil Engineering.

Reglamento de Construcciones para el Distrito Federal. Gaceta Oficial del Gobierno del Distrito Federal. 29 de enero de 2004.




Revista Ingeniería y Tecnología UAS, Año 3 (2020), No. 3, es una publicación semestral editada por la Facultad de Ingeniería Culiacán, Calzada de las Américas y Universitarios, Ciudad Universitaria, s/n, Código Postal: 80040, Culiacán Rosales, Sinaloa. Teléfono: +52 (667) 7134053, http://ingenieria.uas.edu.mx, Correo Electrónico: karlalopez@uas.edu.mx Universidad Autónoma de Sinaloa. Editor responsable: Edén Bojórquez Mora. Reserva de Derechos al Uso Exclusivo: 04-2020-010915343800-203. ISSN: 2683-2445, otorgado por el Instituto Nacional de Derechos de Autor. Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación.